@purinton/tasklit-mcp 


Tasklit MCP is a Model Context Protocol (MCP) server providing a set of custom tools for AI and automation workflows, focused on task management. It is designed for integration with AI agents and automation clients, and is easily extendable with your own tools.
Table of Contents
Overview
This project is an MCP server built on @purinton/mcp-server
. It exposes a set of tools via the Model Context Protocol, making them accessible to AI agents and automation clients.
Features
- Dynamic tool loading from the
tools/
directory - Task management tools: create, update, delete, search, get, and log time on tasks
- Simple to add or modify tools
- HTTP API with authentication
- Built for easy extension
- Ready for Docker and systemd deployment
Available Tools
Below is a list of tools provided by this MCP server. Each tool can be called via the MCP protocol or HTTP API.
task-create
Description: Creates one or more tasks. Returns an array of the task IDs that were created.
Input Schema:
{
"tasks": [
{
"details": "string (optional)",
"parent_id": "number (optional)",
"scheduled_time": "string (optional)",
"sort_order": "number (optional)",
"status": "pending | in progress | on hold | blocked | review | cancelled | completed (optional)",
"title": "string"
}
]
}
Example Request:
{
"tool": "task-create",
"args": {
"tasks": [
{ "title": "Write documentation", "status": "pending" }
]
}
}
Example Response:
{
"message": "task-create-reply",
"data": { "task_ids": [123] }
}
task-update
Description: Updates one or more tasks by ID.
Input Schema:
{
"tasks": [
{
"id": "number",
"details": "string (optional)",
"parent_id": "number (optional)",
"scheduled_time": "string (optional)",
"sort_order": "number (optional)",
"status": "pending | in progress | on hold | blocked | review | cancelled | completed (optional)",
"time_logged": "number (optional)",
"title": "string (optional)"
}
]
}
Example Request:
{
"tool": "task-update",
"args": {
"tasks": [
{ "id": 123, "status": "completed" }
]
}
}
Example Response:
{
"message": "task-update-reply",
"data": { "success": true }
}
task-delete
Description: Delete one or more tasks by their IDs.
Input Schema:
{
"task_ids": [123, 124]
}
Example Request:
{
"tool": "task-delete",
"args": { "task_ids": [123] }
}
Example Response:
{
"message": "task-delete-reply",
"data": { "deleted": [123] }
}
task-get
Description: Get all of a task's info by its ID.
Input Schema:
{
"task_ids": [123]
}
Example Request:
{
"tool": "task-get",
"args": { "task_ids": [123] }
}
Example Response:
{
"message": "task-get-reply",
"data": { "tasks": [ { "id": 123, "title": "Write documentation", ... } ] }
}
task-search
Description: Search/list all task titles and details for given statuses.
Input Schema:
{
"search_string": "string (optional)",
"includes": {
"pending": true,
"in progress": true,
"on hold": false,
"blocked": false,
"review": false,
"cancelled": false,
"completed": false
}
}
Example Request:
{
"tool": "task-search",
"args": {
"search_string": "documentation",
"includes": { "pending": true, "in progress": true, "on hold": false, "blocked": false, "review": false, "cancelled": false, "completed": false }
}
}
Example Response:
{
"message": "task-search-reply",
"data": { "tasks": [ { "id": 123, "title": "Write documentation" } ] }
}
task-log-time
Description: Add or remove time spent on a task.
Input Schema:
{
"tasks": [
{ "task_id": 123, "minutes": 30 }
]
}
Example Request:
{
"tool": "task-log-time",
"args": { "tasks": [ { "task_id": 123, "minutes": 30 } ] }
}
Example Response:
{
"message": "task-log-time-reply",
"data": { "success": true }
}
Usage
Install dependencies:
npm install
Configure environment variables:
MCP_PORT
: (optional) Port to run the server (default: 1234)MCP_TOKEN
: (optional) Bearer token for authentication
Start the server:
node tasklit-mcp.mjs
Call tools via HTTP or MCP client.
See the @purinton/mcp-server documentation for protocol/API details.
Extending & Customizing
To add a new tool:
Create a new file in the
tools/
directory (e.g.,tools/mytool.mjs
):import { z, buildResponse } from '@purinton/mcp-server'; export default async function ({ mcpServer, toolName, log }) { mcpServer.tool( toolName, "Write a brief description of your tool here", { echoText: z.string() }, async (_args,_extra) => { log.debug(`${toolName} Request`, { _args }); const response = 'Hello World!'; log.debug(`${toolName} Response`, { response }); return buildResponse(response); } ); }
Document your tool in the Available Tools section above.
- Restart the server to load new tools.
You can add as many tools as you like. Each tool is a self-contained module.
Running as a systemd Service
You can run this server as a background service on Linux using the provided tasklit-mcp.service
file.
1. Copy the service file
Copy tasklit-mcp.service
to your systemd directory (usually /etc/systemd/system/
):
sudo cp tasklit-mcp.service /usr/lib/systemd/system/
2. Adjust paths and environment
- Make sure the
WorkingDirectory
andExecStart
paths in the service file match where your project is installed (default:/opt/tasklit-mcp
). - Ensure your environment file exists at
/opt/tasklit-mcp/.env
if you use one.
3. Reload systemd and enable the service
sudo systemctl daemon-reload
sudo systemctl enable tasklit-mcp
sudo systemctl start tasklit-mcp
4. Check service status
sudo systemctl status tasklit-mcp
The server will now run in the background and restart automatically on failure or reboot.
Running with Docker
You can run this MCP server in a Docker container using the provided Dockerfile
.
1. Build the Docker image
docker build -t tasklit-mcp .
2. Run the container
Set your environment variables (such as MCP_TOKEN
) and map the port as needed:
docker run -d \
-e MCP_TOKEN=your_secret_token \
-e MCP_PORT=1234 \
-p 1234:1234 \
--name tasklit-mcp \
tasklit-mcp
- Replace
your_secret_token
with your desired token. - You can override the port by changing
-e MCP_PORT
and-p
values.
3. Updating the image
If you make changes to the code, rebuild the image and restart the container:
docker build -t tasklit-mcp .
docker stop tasklit-mcp && docker rm tasklit-mcp
# Then run the container again as above
Support
For help, questions, or to chat with the author and community, visit: