@tetherai/grok
Standalone Grok provider for TetherAI - Everything you need in one package!
This package provides a complete, streaming-first solution for the Grok AI (xAI) Chat Completions API.
No external dependencies required - includes all types, utilities, and middleware built-in.
Think of it as Express for AI providers with everything included.
What's Included
- Grok Provider: Streaming chat completions with full API support
- Enhanced Chat Options: Temperature, maxTokens, topP, frequencyPenalty, presencePenalty, stop sequences, system prompts
- Non-Streaming Chat: Complete response handling for simple requests
- Model Management: List models, validate model IDs, get token limits
- Retry Middleware: Automatic retries with exponential backoff
- Fallback Middleware: Multi-provider failover support
- Error Handling: Rich error classes with HTTP status codes
- Edge Runtime: Works everywhere from Node.js to Cloudflare Workers
- SSE Utilities: Built-in Server-Sent Events parsing
- TypeScript: 100% typed with zero
any
types
Quick Start
Installation
npm install @tetherai/grok
# or
pnpm add @tetherai/grok
# or
yarn add @tetherai/grok
That's it! No additional packages needed - everything is included.
Basic Usage
Set your API key:
export GROK_API_KEY=sk-...
Streaming Chat Example
import { grok } from "@tetherai/grok";
const provider = grok({
apiKey: process.env.GROK_API_KEY!,
timeout: 30000, // 30 second timeout
maxRetries: 2 // Built-in retry configuration
});
for await (const chunk of provider.streamChat({
model: "grok-beta",
messages: [{ role: "user", content: "Hello!" }],
temperature: 0.7, // Enhanced chat options
maxTokens: 1000,
systemPrompt: "You are a helpful assistant."
})) {
if (chunk.done) break;
process.stdout.write(chunk.delta);
}
Non-Streaming Chat Example
const response = await provider.chat({
model: "grok-beta",
messages: [{ role: "user", content: "Hello!" }],
temperature: 0.5,
maxTokens: 500,
responseFormat: "json_object" // Get structured responses
});
console.log(response.content);
console.log(`Used ${response.usage.totalTokens} tokens`);
Model Management Example
// Get available models
const models = await provider.getModels();
console.log("Available models:", models);
// Validate model ID
const isValid = provider.validateModel("grok-beta");
console.log("Model valid:", isValid);
// Get token limits
const maxTokens = provider.getMaxTokens("grok-beta");
console.log("Max tokens:", maxTokens);
Parameter Mapping
TS Interface Field | Grok API Field |
---|---|
maxTokens |
max_tokens |
topP |
top_p |
responseFormat |
response_format.type |
Grok follows an OpenAI‑compatible schema and these fields are mapped automatically.
Middleware Compatibility
Feature | Support |
---|---|
withRetry |
✅ |
withFallback |
✅ |
Configuration Options
Grok Provider Options
interface GrokOptions {
apiKey: string; // Required: Your xAI API key
baseURL?: string; // Custom API endpoint (default: https://api.x.ai/v1)
timeout?: number; // Request timeout in ms (default: 30000)
fetch?: Function; // Custom fetch implementation
}
Supported Models
Grok provider supports the following models:
Model | Context Window | Description |
---|---|---|
grok-beta |
8K tokens | Base Grok model |
grok-beta-vision |
128K tokens | Grok with vision capabilities |
grok-beta-2 |
128K tokens | Enhanced Grok model |
grok-beta-2-vision |
128K tokens | Enhanced Grok with vision |
grok-2 |
128K tokens | Latest Grok 2 model |
grok-2-vision |
128K tokens | Latest Grok 2 with vision |
grok-2-mini |
128K tokens | Compact Grok 2 model |
grok-2-mini-vision |
128K tokens | Compact Grok 2 with vision |
Note: Vision models support image input and have larger context windows.
Middleware
Retry Middleware
import { withRetry } from "@tetherai/grok";
const retryProvider = withRetry(provider, {
maxRetries: 3,
retryDelay: 1000,
shouldRetry: (error) => error.status >= 500
});
// Use with automatic retries
const response = await retryProvider.chat({
model: "grok-beta",
messages: [{ role: "user", content: "Hello" }]
});
Fallback Middleware
import { withFallback } from "@tetherai/grok";
const fallbackProvider = withFallback(provider, {
fallbackProvider: backupProvider,
shouldFallback: (error) => error.status === 429
});
// Automatically fallback on rate limits
const response = await fallbackProvider.chat({
model: "grok-beta",
messages: [{ role: "user", content: "Hello" }]
});
Advanced Examples
Streaming with System Prompt
const stream = provider.streamChat({
model: "grok-beta",
messages: [
{ role: "user", content: "Write a Python function to calculate fibonacci numbers" }
],
systemPrompt: "You are a helpful coding assistant. Always provide working code examples.",
temperature: 0.3,
maxTokens: 2000
});
let fullResponse = "";
for await (const chunk of stream) {
if (chunk.done) break;
fullResponse += chunk.delta;
process.stdout.write(chunk.delta);
}
console.log("\n\nFull response:", fullResponse);
Error Recovery with Fallback
import { grok } from "@tetherai/grok";
import { withFallback } from "@tetherai/grok";
const grokProvider = grok({ apiKey: process.env.GROK_API_KEY! });
const backupProvider = openAI({ apiKey: process.env.OPENAI_API_KEY! });
const fallbackProvider = withFallback(grokProvider, {
fallbackProvider: backupProvider,
shouldFallback: (error) => error.status === 429 || error.status >= 500
});
try {
const response = await fallbackProvider.chat({
model: "grok-beta",
messages: [{ role: "user", content: "Hello" }]
});
console.log("Response:", response.content);
} catch (error) {
console.error("Both providers failed:", error);
}
Custom Fetch Implementation
const customProvider = grok({
apiKey: process.env.GROK_API_KEY!,
fetch: async (url, options) => {
// Add custom headers
const customOptions = {
...options,
headers: {
...options.headers,
'X-Custom-Header': 'value'
}
};
return fetch(url, customOptions);
}
});
TypeScript
Full TypeScript support with zero any
types:
import {
grok,
GrokOptions,
GrokError,
ChatResponse,
StreamChatOptions
} from "@tetherai/grok";
const options: GrokOptions = {
apiKey: process.env.GROK_API_KEY!,
baseURL: "https://api.x.ai/v1",
timeout: 30000
};
const provider = grok(options);
async function chatWithGrok(options: StreamChatOptions): Promise<ChatResponse> {
try {
return await provider.chat(options);
} catch (error) {
if (error instanceof GrokError) {
console.error(`Grok error: ${error.message}`);
}
throw error;
}
}
Edge Runtime Support
Works everywhere from Node.js to Cloudflare Workers:
// Cloudflare Worker
export default {
async fetch(request: Request): Promise<Response> {
const provider = grok({
apiKey: env.GROK_API_KEY,
fetch: globalThis.fetch
});
const response = await provider.chat({
model: "grok-beta",
messages: [{ role: "user", content: "Hello from Cloudflare!" }]
});
return new Response(response.content);
}
};
Performance Tips
- Use streaming for real-time responses
- Set appropriate timeouts for your use case
- Implement retry logic for production reliability
- Use fallback providers for high availability
- Batch requests when possible