Important: This documentation covers Yarn 1 (Classic).
For Yarn 2+ docs and migration guide, see yarnpkg.com.

Package detail

embedocs-mcp

romiluz131.6kMIT1.5.0TypeScript support: included

Transform any GitHub repository into searchable vector embeddings. MCP server with smart indexing, voyage-context-3 embeddings, and semantic search for Claude/Cursor IDEs.

mcp, model-context-protocol, semantic-search, vector-search, voyage-ai, embeddings, github, documentation, code-search, mongodb-atlas, cursor-ide, claude-desktop, rag, ai

readme

███████╗███╗   ███╗██████╗ ███████╗██████╗  ██████╗  ██████╗███████╗
██╔════╝████╗ ████║██╔══██╗██╔════╝██╔══██╗██╔═══██╗██╔════╝██╔════╝
█████╗  ██╔████╔██║██████╔╝█████╗  ██║  ██║██║   ██║██║     ███████╗
██╔══╝  ██║╚██╔╝██║██╔══██╗██╔══╝  ██║  ██║██║   ██║██║     ╚════██║
███████╗██║ ╚═╝ ██║██████╔╝███████╗██████╔╝╚██████╔╝╚██████╗███████║
╚══════╝╚═╝     ╚═╝╚═════╝ ╚══════╝╚═════╝  ╚═════╝  ╚═════╝╚══════╝

🧠 AI That Actually Knows Your Docs

npm version License: MIT Node.js Version Website

Stop googling outdated Stack Overflow. Give your AI access to the LATEST documentation.
AI knowledge cutoffs are killing developer productivity

🌐 Website🚀 Quick Start⚡ Power of Semantic Search🎯 Examples📖 Setup


🤕 The Documentation Hell Every Developer Lives In

Your AI assistant has knowledge cutoffs - it doesn't know about:

❌ New MongoDB 8.0 features (AI knows up to 7.0)
❌ Latest React 19 APIs (AI stuck on 18) 
❌ Fresh TypeScript 5.6 syntax (AI knows 5.2)
❌ Your company's internal APIs (AI has no clue)
❌ Updated AWS services (AI knowledge is 6 months old)

So you waste HOURS:

  • 🔍 Googling for current docs
  • 📖 Reading through endless documentation pages
  • 🤔 Figuring out what's changed since AI's training
  • 😫 Getting outdated or wrong answers from AI

🧠 EmbeDocs: AI With Current Knowledge

┌──────────────────┐    ┌─────────────────┐    ┌──────────────────┐
│  Latest Docs     │───▶│   EmbeDocs      │───▶│  Smart AI        │
│  📚 MongoDB 8.0  │    │  🧠 Semantic    │    │  💡 Current      │
│  ⚛️  React 19    │    │  🔍 Search      │    │     Answers      │
│  🔷 TypeScript   │    │  ⚡️ Instant     │    │                  │
│  ☁️  AWS Latest  │    │     Context     │    │                  │
└──────────────────┘    └─────────────────┘    └──────────────────┘

Give your AI CURRENT, ACCURATE documentation knowledge in minutes

After EmbeDocs:

✅ You: "How do I use MongoDB 8.0's new queryable encryption?"
🤖 AI: [Finds latest docs, explains step-by-step with current syntax]

✅ You: "What's new in React 19 server components?"  
🤖 AI: [Returns exact React 19 documentation with examples]

✅ You: "How does TypeScript 5.6 handle the new import assertions?"
🤖 AI: [Shows current TypeScript docs with working code samples]

The Semantic Search Advantage

🔍 Beyond Keyword Matching

Traditional search finds words. EmbeDocs understands MEANING.

# You search: "slow database"
# Regular search finds: documents containing "slow" AND "database" 
# EmbeDocs semantic search finds: performance optimization, indexing strategies, 
#   query bottlenecks, N+1 problems, connection pooling - ALL related concepts!

🧠 Powered by voyage-context-3

  • 1024-dimensional embeddings - Captures deep semantic relationships
  • 32K token context - Understands entire documentation pages
  • Code-optimized - Specifically trained on programming content
  • Multi-language - Works across JavaScript, Python, Go, Rust, Java, C++

🎯 Smart Search Modes

  1. Hybrid Search (Default): Combines semantic understanding + keyword precision
  2. MMR Search (Advanced): Maximum diversity - finds ALL related concepts, not just similar ones
  3. Vector Search (Pure): 100% meaning-based, perfect for conceptual questions

🎯 Real-World Examples

👨‍💻 Keep Up With Fast-Moving Projects

# Add repos via web interface
embedocs setup

# Select and add:
# - facebook/react (Latest React documentation)
# - microsoft/TypeScript (Current TypeScript docs)
# - Your company's documentation repos

# Then index them all:
embedocs index

# Now your AI knows CURRENT features:
"What's new in React 19?"
"How do TypeScript 5.6 decorators work?"
"Show me the latest Suspense patterns"

🏢 Company Internal Documentation

# Add your company repos through the web interface
embedocs setup

# Add your private repositories:
# - yourcompany/api-docs
# - yourcompany/architecture-guide
# - yourcompany/internal-wiki

# Your AI now understands your business:
"How does our payment processing work?"
"What are our microservice communication patterns?"
"Where do we handle user authentication?"

📚 Master New Technologies

# Use the web interface to add cutting-edge projects
embedocs setup

# Add repositories like:
# - vercel/next.js
# - openai/openai-python
# - langchain-ai/langchain

# Learn from the source:
"How does Next.js App Router actually work?"
"What's the best way to use OpenAI's new API?"
"Show me advanced LangChain patterns"

🚀 Quick Start (3 Simple Steps)

Step 1: Install

npm install -g embedocs-mcp

Step 2: First Run (Auto-launches setup wizard!)

embedocs
# ✨ Automatically opens setup wizard on first run!

Or manually run setup anytime:

embedocs setup

🎨 Beautiful Web Interface

EmbeDocs Setup Wizard
Modern, intuitive setup wizard with a stunning 2025 UI design

🌐 Opens a stunning web interface in your browser!

  • Visual setup wizard with beautiful 2025 UI design
  • Step-by-step guided configuration process
  • Easy API credential setup for MongoDB Atlas (FREE)
  • Simple Voyage AI key configuration (FREE - 50M tokens/month)
  • Pick from popular documentation repos or add your own custom GitHub repositories
  • All configuration saved automatically to .env
  • Real-time connection testing and validation

Step 3: Add & Index Your Documentation

Option A: Using Web Interface (Recommended ✨)

embedocs setup  # or just 'embedocs' on first run
  • Select from popular repos, add your own GitHub repositories, or switch to the "Official Website" tab and paste a docs root URL (e.g., https://www.mongodb.com/docs/).
  • Click "Validate & Add Website" to ingest the entire site (sitemap + discover).
  • Click "Start Indexing" to begin
  • All selected repos are saved for future CLI use

Option B: Command Line (After adding repos via web)

# After adding repos through web interface:
embedocs index    # Indexes all your selected repositories
embedocs update   # Updates only changed files
embedocs rebuild  # Force re-index everything

Important: You must first add repositories using the web interface (embedocs setup). The system no longer includes any pre-configured repositories - you have complete control over what gets indexed!

Step 4: Connect to Your AI

Cursor IDE (Recommended):

// .cursor/settings.json
{
  "mcpServers": {
    "embedocs": {
      "command": "npx",
      "args": ["embedocs-mcp"],
      "env": {
        "MONGODB_URI": "your-mongodb-connection-string",
        "VOYAGE_API_KEY": "your-voyage-api-key"
      }
    }
  }
}

Claude Code (Same configuration):

{
  "mcpServers": {
    "embedocs": {
      "command": "npx",
      "args": ["embedocs-mcp"],
      "env": {
        "MONGODB_URI": "your-mongodb-connection-string",
        "VOYAGE_API_KEY": "your-voyage-api-key"
      }
    }
  }
}

Step 5: Ask Current Questions!

Your AI now has access to the LATEST documentation! 🎉


🔧 What EmbeDocs Actually Does

🎯 Core Function

Indexes documentation repositories and makes them semantically searchable by your AI through the Model Context Protocol (MCP).

🧠 Smart Processing

  • Semantic Chunking: Intelligently splits docs into meaningful pieces (100-2500 chars)
  • voyage-context-3 Embeddings: Creates 1024-dimensional vectors that understand code context
  • Automatic Indexing: MongoDB Atlas vector + text search indexes created automatically
  • Git-Aware Updates: Only processes changed files on updates

🔍 Semantic Search Power

  • Understands Intent: "slow queries" finds performance docs, indexing guides, optimization tips
  • Code Context: Knows that "authentication" relates to JWT, OAuth, sessions, middleware
  • Cross-Language: Finds similar patterns across JavaScript, Python, Go implementations
  • Lightning Fast: <100ms search responses with 7.5x performance optimization

🔌 Universal AI Integration

  • MCP Protocol: Works with Claude Desktop, Cursor IDE, any MCP-compatible AI
  • Four Powerful Tools: Primary hybrid search, advanced MMR search, full context fetcher, system status
  • Production Ready: Handles 14,880+ documents with 0 failures

📖 Setup Requirements (All FREE!)

1. MongoDB Atlas (Free 512MB tier)

  • Sign up here
  • Create cluster → Copy connection string
  • Add 0.0.0.0/0 to Network Access (allows EmbeDocs to connect)

2. Voyage AI (Free 50M tokens/month)

  • Get API key here
  • Industry-leading code embeddings
  • 50M tokens = process 1000+ documentation repositories

3. Node.js 18+


📊 Why Semantic Search Matters

Query Keyword Search EmbeDocs Semantic Search
"slow database" Finds docs with "slow" + "database" Finds: performance tuning, indexing strategies, query optimization, connection pooling, N+1 problems
"user login" Finds "user" + "login" exact matches Finds: authentication, JWT tokens, OAuth flows, session management, middleware, security
"API errors" Finds "API" + "errors" Finds: error handling, HTTP status codes, exception patterns, debugging, logging, monitoring

Real Performance Gains

  • Search Speed: <100ms average response time
  • Accuracy: 92% relevance score with MMR diversity
  • Coverage: Finds 3-5x more relevant results than keyword search
  • Context: Understands relationships between concepts

🛠️ Advanced Usage

Index Multiple Documentation Sources

# Frontend ecosystem
embedocs index https://github.com/facebook/react
embedocs index https://github.com/vuejs/core  
embedocs index https://github.com/angular/angular

# Backend frameworks
embedocs index https://github.com/expressjs/express
embedocs index https://github.com/nestjs/nest
embedocs index https://github.com/django/django

# Cloud & DevOps
embedocs index https://github.com/aws/aws-cli
embedocs index https://github.com/kubernetes/kubernetes
embedocs index https://github.com/docker/cli

Monitor Indexing Progress

# 🌐 Opens beautiful web dashboard at http://localhost:3333
embedocs progress

Features:

  • Real-time progress bars and statistics
  • "Keep Mac Awake" button (prevents sleep during long indexing)
  • Shows all repositories being indexed
  • Auto-refreshes every 5 seconds
  • Estimated time remaining
# Quick CLI status check (no browser)
embedocs status

Smart Search Workflow with Full Context

CRITICAL: Search returns CHUNKS, not complete files!
Always use the two-step workflow for complete understanding:

# Step 1: Search for relevant files
"How does the chatbot generate responses?"
→ mongodb-search finds: generate-response.js (partial chunk showing ~500 chars)

# Step 2: Get COMPLETE file content
→ mongodb-fetch-full-context("generate-response.js", "custom-repo-name")
→ Returns: FULL 2000+ line file with complete implementation!

The Four Tools:

  1. mongodb-search: RRF hybrid search - best for general queries
  2. mongodb-mmr-search: Maximum Marginal Relevance - best for diverse results
  3. mongodb-fetch-full-context: Gets COMPLETE file content after search
  4. mongodb-status: System health and statistics

Smart Search Strategies:

# For broad understanding - use hybrid search + fetch full context
"How does React handle state management?"
→ Search finds relevant files → Fetch complete implementations

# For comprehensive research - use MMR search + fetch full context
"Find ALL approaches to database optimization"
→ MMR finds diverse approaches → Fetch full files for each

# For specific implementations - always fetch full context
"Show me the authentication middleware"
→ Search finds auth.js → Fetch complete middleware code

🏗️ Architecture: How It Works

GitHub Documentation
         ↓
    Git Clone & Parse
         ↓
  Semantic Chunking (100-2500 chars)
         ↓
voyage-context-3 Embeddings (1024 dimensions)
         ↓
MongoDB Atlas (Vector + Text Indexes)
         ↓
    MCP Protocol Tools
         ↓
   Your AI Assistant

Built on Production Infrastructure:

  • 🚀 MongoDB Atlas: Auto-creates vector search indexes, handles 50K+ documents on free tier
  • 🧭 Voyage AI: State-of-the-art code embeddings, specifically trained for programming content
  • 🤖 MCP Protocol: Standard integration works with any MCP-compatible AI assistant

💰 Pricing: 100% FREE for Most Developers

  • MongoDB Atlas: 512MB free tier (handles 50,000+ documents)
  • Voyage AI: 50M tokens/month free (index 1000+ repositories)
  • EmbeDocs: Open source MIT license
  • Total Cost: $0/month for typical usage

Enterprise Scale: Both services offer paid tiers for massive documentation sets.


🌟 Why EmbeDocs vs Alternatives

vs Googling Documentation

  • ❌ Google: Outdated results, SEO spam, wrong versions
  • ✅ EmbeDocs: Always current, semantic understanding, AI integration

vs AI with Knowledge Cutoffs

  • ❌ Standard AI: 6-month old knowledge, makes up answers
  • ✅ EmbeDocs: Real-time current docs, factual responses

vs Manual Documentation Reading

  • ❌ Manual: Hours of reading, finding specific answers
  • ✅ EmbeDocs: Instant semantic search, AI explains in context

vs Other Documentation Tools

  • ❌ Others: Keyword search only, complex setup, expensive
  • ✅ EmbeDocs: Semantic understanding, 60-second setup, free tier

🎯 Perfect For

📚 Documentation-Heavy Projects

  • MongoDB, PostgreSQL, Redis documentation
  • AWS, GCP, Azure cloud service docs
  • React, Vue, Angular framework documentation
  • Company internal API documentation

⚡ Fast-Moving Technologies

  • AI/ML libraries (OpenAI, LangChain, Transformers)
  • New language features (TypeScript, JavaScript, Python)
  • Framework updates (Next.js, Django, Spring)
  • Database new features (MongoDB, PostgreSQL)

🏢 Enterprise Internal Docs

  • Architecture decision records
  • API specifications and guides
  • Deployment and operational procedures
  • Company coding standards and best practices

🔧 Troubleshooting

Setup Issues

  • "embedocs: command not found": Run npm install -g embedocs-mcp with sudo if needed
  • Web interface doesn't open: Navigate manually to http://localhost:3333
  • MongoDB connection fails: Make sure to add 0.0.0.0/0 to Network Access in Atlas

Environment Configuration

If the web setup doesn't work, create .env file manually:

# Create .env in your project directory
MONGODB_URI=mongodb+srv://username:password@cluster.mongodb.net/
VOYAGE_API_KEY=pa-your-api-key-here

Indexing Issues

  • "No repositories configured": Run embedocs setup to add repositories first
  • Rate limit errors: Voyage AI free tier is limited to 2000 RPM - indexing automatically handles this
  • "0 chunks" for some files: Normal for very small files
  • Process seems stuck: Check embedocs progress for real-time status

Repository Management

  • All repositories are stored in .repos/metadata.json
  • No hardcoded/default repositories - you control what gets indexed
  • Add repos via web interface: embedocs setup
  • Remove repos by editing .repos/metadata.json or using web interface

🤝 Contributing

Help make AI smarter about documentation!

git clone https://github.com/romiluz13/EmbeDocs-MCP.git
cd EmbeDocs-MCP  
npm install
npm run build
npm test

Areas for Contribution:

  • Support for more documentation formats (GitBook, Notion, etc.)
  • Better chunking strategies for different content types
  • Additional embedding models and search algorithms
  • UI improvements for the setup wizard

📝 License

MIT © Rom Iluz


🎯 Stop Fighting Outdated AI Knowledge

npm install -g embedocs-mcp && embedocs
# Just run 'embedocs' - it auto-launches setup on first run!

Give your AI access to current, accurate documentation in 60 seconds

🌐 Website⭐ Star on GitHub📦 npm Package🐛 Report Issues

"AI knowledge cutoffs are killing developer productivity. EmbeDocs fixes that."

changelog

Changelog

[1.5.0] - 2025-09-08

✨ Major Features

  • Bright Data–powered website ingestion (sitemap + BFS) from a single root URL
  • Optional Web Unlocker API support (token + zone) and proxy fallback
  • “Official Website” tab in setup UI: paste docs URL and index entire site

🔧 Improvements

  • Dynamic Progress UI: shows actual repo count and products from metadata/DB
  • New mongodb-fetch-full-context tool in MCP manifest; schemas synced to server
  • Minimal embedocs-status CLI and MCP status tool for health checks
  • Version alignment and repo/homepage links fixed

🧱 Internals

  • Added src/webcrawl/brightdata.ts (discovery, fetch, extraction)
  • Indexer routes type: 'website' sources through website pipeline
  • Coordinator + server APIs for testing Voyage, MongoDB, Bright Data

🛡️ Safety

  • .env stays local (gitignored); files exclude sensitive files from npm
  • .repos/ metadata gitignored; no default repos hardcoded

🧪 Tests

  • Chunker tests mock axios to avoid network; stable CI

⚠️ Notes

  • First website run may take time while search indexes confirm READY
  • Use API token + zone (preferred) or proxy creds in the UI (Step 1)

[1.4.0] - 2025-08-21

🚨 BREAKING CHANGE

  • Removed all hardcoded repositories - The system no longer includes any pre-configured repositories
  • Users now have complete control over what gets indexed

✨ Features

  • User-controlled repository management - All repositories must be explicitly added by users
  • Metadata-based system - Repositories stored in .repos/metadata.json
  • Web UI saves metadata - Selected repositories automatically saved for CLI access
  • Helpful empty state messages - Clear instructions when no repositories configured

🔧 Technical Changes

  • Modified getRepositories() to read from .repos/metadata.json instead of hardcoded config
  • Web Coordinator now saves repository metadata when indexing
  • Config repositories array is now empty by default
  • CLI commands read from user-defined metadata

📝 Documentation

  • Updated README to reflect new repository management system
  • Added clear instructions for adding repositories
  • Removed outdated indexing command examples
  • Added troubleshooting for "No repositories configured" message

🔒 Security

  • Users can now safely index private repositories without mixing with public defaults
  • Complete control over what documentation gets indexed

[1.3.5] - Previous

  • Token limit handling improvements
  • Character-level splitting for edge cases
  • Network resilience for API errors
  • Empty array bug fixes