kruptein
crypto; from kruptein
to hide or conceal.
Sandbox
To test the module feel free to use the sandbox
Install
To install npm install kruptein
Methods
.set(secret, plaintext, [aad], callback)
.get(secret, ciphertext, [{at: auth_tag, aad: aad}], callback)
Options
Industry standards are used for the algorithm, hashing algorithm, key & IV sizes. The default key derivation is pbkdf2, however use of the scrypt derivation function can be enabled.
algorithm
: (Optional) Cipher algorithm fromcrypto.getCiphers()
. Default:aes-256-gcm
.hashing
: (Optional) Hash algorithm fromcrypto.getHashes()
. Default:sha384
.encodeas
: (Optional) Output encoding. Currently supportsbinary
,hex
, &base64
. Default:base64
.key_size
: (Optional) Key size bytes (should match block size of algorithm). Default:32
iv_size
: (Optional) IV size bytes. Default:16
.at_size
: (Optional) Authentication tag size. Applicable togcm
&ocb
cipher modes. Default:128
.use_scrypt
: (Optional) Use.scrypt()
to derive a key. Requires node > v10. Default/Fallback:.pbkdf2()
.use_asn1
: (Optional) Disable the default ASN.1 encoding. Default: true
Usage
When selecting an algorithm from crypto.getCiphers()
the
iv
and key_size
values are calculated auto-magically to make implementation
easy.
You can always define your own if the defaults per algorithm and mode
aren't what you would like; see the options
section above.
Create ciphertext from plaintext
To create a new ciphertext object. Run example to encrypt plaintext.
const kruptein = require("kruptein")(opts);
let secret = "squirrel";
kruptein.set(secret, "Operation mincemeat was an example of deception", (err, ct) => {
if (err)
throw err;
console.log(ct);
});
Get plaintext from ciphertext
To retrieve plaintext from a ciphertext object. Run example to decrypt ciphertext.
const kruptein = require("kruptein")(opts);
let ciphertext, secret = "squirrel";
kruptein.get(secret, ciphertext, (err, pt) => {
if (err)
throw err;
console.log(pt);
});
Output
The .set()
method output depends on three factors; the encodeas
,
algorithm
and use_asn1
.
For any algorithm that supports authentication (AEAD), the object
structure includes the Authentication Tag
and the Additional
Authentication Data
attribute and value.
When the use_asn1
option is enabled (default is true), the result is an ASN.1
value using the encodeas
value. While this is a more complex
encoding option, it helps standardize & minimize the resulting
ciphertext output.
Test harness
The included test harness, invoked with npm test
, makes every
attempt to trap and handle errors. Some of which come from side
channel or possible malability of the resultant ciphertext.
This can be seen within the test/index.js
CI test harness under
the HMAC, AT & AAD validation test cases.
An online playgound for experimenting with the module can also be found here
Cryptography References
This module conforms to industry recommendations regarding algorithm type, mode, key size, iv size & implementation, digests, key derivation & management etc. References used provided here:
RFC:
- RFC 2104: HMAC: Keyed-Hashing for Message Authentication
- RFC 4086: Randomness Requirements for Security
- RFC 5084: Using AES-CCM and AES-GCM Authenticated Encryption
- RFC 7914: The scrypt Password-Based Key Derivation Function
- RFC 8018: Password-Based Cryptography Specification
- X.697: ASN.1 encoding rules: Specifications of JavaScript Object Notation Encoding Rules (JER)
NIST:
- SP 800-38A: Block cipher modes of operation
- SP 800-38B: Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC
- SP 800-57P1: Recommendations for key management
- SP 800-107: Recommendation for Applications Using Approved Hash Algorithms
- SP 800-108: Recommendation for Key Derivation Using Pseudorandom Functions
- SP 800-131A: Transitioning the Use of Cryptographic Algorithms and Key Lengths
- SP 800-132: Recommendation for Password-Based Key Derivation
- SP 800-175B: Guideline for Using Cryptographic Standards in the Federal Government
FIPS:
- FIPS 197: Advanced Encryption Standard (AES)
- FIPS 198-1: The Keyed-Hash Message Authentication Code (HMAC)
- FIPS 180-4: Secure Hash Standard (SHS)
Contributing
Contributions are welcome & appreciated!
Refer to the contributing document to help facilitate pull requests.
License
This software is licensed under the MIT License.
Copyright Jason Gerfen, 2019 to 2024.